
Modifying the Radiative Quantum Efficiency of
Erbium-Doped Glass in Silicon Slot Waveguides

Ryan M. Briggs, Gerald M. Miller, and Harry A. Atwater
Thomas J. Watson Laboratory of Applied Physics

California Institute of Technology, Pasadena, California 91125 USA
Email: rbriggs@caltech.edu

Abstract—We have modulated the radiative emission rate
in Si slot waveguides with Er-doped glass slots by varying
the waveguide layer dimensions. The corresponding quantum
efficiency of 1537-nm emission varies between 0.37 and 0.51.

I. INTRODUCTION

High index contrast Si-based slot waveguides exhibit useful
properties owing to extremely large relative electric field
intensities in the slot layer for guided transverse-magnetic
(TM) modes [1]. In the pursuit of an efficient light source inte-
grated with Si photonic devices, slot waveguides with actively
emitting slot layers are intriguing since they are expected to
produce modal gain proportional to the intensity of the electric
field confined to the slot, which can exceed 50% for certain
geometries [2]. Another consequence of this confinement is
the modification of the local density of optical states (LDOS),
which also scales with the electric field intensity but depends
on all modes, both guided and radiative, supported by the
waveguide structure [3], [4]. This LDOS enhancement results
in concomitant enhancement of the radiative component of the
spontaneous emission rate and increased coupling efficiency
into TM modes, as shown in recent work on Si slot waveguides
with Er-doped silica [5] and Si nanocrystal sensitized Er slot
layers [6].

Er-doped glass is an attractive candidate as an active slot
material since the 4I13/2 to 4I15/2 transition of Er3+ produces
light near 1550 nm. In addition to being in the telecommu-
nications C band, light near this wavelength is below the Si
band edge and can thus propagate through Si with low loss.
Furthermore, the low index of silica-based glass is ideal for
achieving large electric field confinement in slot waveguides.

We have fabricated planar Si slot waveguides with active Er-
doped soda-lime glass slot layers and varied Si layer dimen-
sions in order to demonstrate the dependence of the radiative
spontaneous emission rate on guided waveguide modes. Time-
resolved photoluminescence (PL) from the waveguides was
used to determine the total emission rate of Er3+ ions in
the glass slot layers. For each slot structure, the interfaces of
the Er-doped layer, as well as the constituents of layer itself,
are identical; therefore, the non-radtiative decay rate, Γnr, can
be assumed constant and all observed changes in the total
emission rate can be attributed to changes in the LDOS.

Calculations of the LDOS for the slot structures are pre-
sented and compared with measured values of the radiative

emission rate using Γnr as a sole fitting parameter. The cal-
culations were performed using an extension of the formalism
laid out by Urbach and Rikken for dielectric slabs [7]. We find
that the measured values of the emission rate match well to
the theoretical predictions. Knowing Γnr and the LDOS allows
the internal quantum efficiency, η, to be determined. We find
that η ranges from 0.37 to 0.51 for the waveguide geometries
considered here, corresponding to a significant change that is
a function of waveguide geometry alone.

II. FABRICATION

Planar slot waveguide structures were fabricated by first
thinning the top Si layer of Si-on-insulator (SOI) samples
using thermal oxidation and etching with buffered hydrofluoric
acid. The SOI had a lightly B-doped (∼ 1015 cm−3), p-
type Si device layer and a 3-µm buried oxide layer. Samples
were prepared with device layer thicknesses of approximately
100, 150, and 200 nm. An additional 5-nm thermal oxide
passivation layer was grown on the top surfaces of the samples.
A 45-nm layer of Er-doped soda-lime glass was then deposited
on all the samples simultaneously using DC ion beam co-
sputtering of SiO2 with soda-lime glass and metallic Er.
The samples were annealed for 300 s in a rapid thermal
annealing (RTA) furnace at 850 ◦C in an O2 ambient. The RTA
furnace activates Er3+ ions in the glass matrix with minimal
oxide undergrowth (∼ 1 nm) beneath the film. Spectroscopic
ellipsometry was used to verify that the total thickness of
oxide on the SOI was approximately 51 nm for all samples,
and Rutherford backscattering spectroscopy (RBS) was used
to verify that Er resides only in the top 45 nm. RBS also
revealed that the films contain 1.1 at. % Er.

An amorphous Si layer was sputtered atop the Er-doped lay-
ers and annealed in the RTA furnace for 300 s at 700 ◦C in N2

to crystallize the film. Ellipsometry revealed polycrystalline
optical properties over the visible to near-infrared spectrum
and a film thickness of 73 nm. The final planar waveguide
geometry is shown in Fig. 1. As described in Section IV, the
radiative emission rate in bulk glass, Γ1.45

rad , was determined
by sputtering an identical Er-doped film on a silica substrate.

III. LDOS CALCULATIONS

For an electron bound to an Er3+ ion, Fermi’s golden rule
dictates that the transition rate from an excited state to the
ground state via photon emission is proportional to the density



Fig. 1. Planar slot waveguide geometry shown with the calculated LDOS
corresponding to a crystalline Si layer thickness of 100 nm.

of optical states. In contrast to emitters in a homogeneous
medium, the spontaneous emission rate of Er3+ ions in a
waveguide is position dependent since the fields associated
with photon states are themselves a function of position. This
local density of optical states, or LDOS, is defined as the
position-dependent factor that scales the radiative emission
rate. In this work, the LDOS is normalized to the density of
states in a homogeneous medium of n = 1.45, so the total
decay rate is

Γtot(r) = Γrad(r) + Γnr = LDOS(r) Γ1.45
rad + Γnr, (1)

where the non-radiative decay rate, Γnr, accounts for effects
such as Auger energy transfer and defect quenching, and Γ1.45

rad

is the radiative emission rate in bulk glass.
Taking into account all sicrete guided modes and the

continuum of radiative modes associated with the waveguide
structure, the LDOS is calculated as in Refs. [4] and [7] for
an isotropic ensemble of emitters, and, due to the symmetry,
depends only on z (as defined in Fig. 1). As seen in Fig. 1,
the LDOS varies over the thickness of the slot. The collective
effect on the radiative emission rate is captured by the averaged
LDOS, defined as

LDOSav =
1

wslot

∫
slot

LDOS(z)dz, (2)

where the slot width is wslot = 45 nm.
The averaged LDOS for the slot region is plotted in Fig. 2

for different thicknesses of the crystalline Si layer beneath the
Er-doped film, where the top Si layer thickness is held constant
at 73 nm, and the slot layer is 51-nm thick with the top 45
nm containing Er emitters. As the c-Si layer becomes thicker,
the waveguide begins to support more guided modes. As each
guided mode is born, there is a slope discontinuity in the curve
representing the contribution from radiative modes. The net
effect is that LDOSav for all modes is a smoothly varying
function. Due to large electric field confinement in the slot,
the contribution from the first-order TM mode becomes quite
large as the c-Si layer approaches a thickness of around 200
nm. Overall, the averaged LDOS is modulated by a factor
of 3 simply by adjusting the thickness of the c-Si layer.
Consequently, one can expect large changes in the observed
emission rate for changes in geometry.

Fig. 2. The calculated averaged LDOS for the slot region of the Si slot
waveguide geometry as a function of the thicknesses of the crystalline Si
layer beneath the Er-doped film. The top Si layer thickness as well as the
thickness of the slot are constant. Contributions from each guided mode, both
transverse electric (TE) and transverse magnetic (TM), are shown, as is the
contribution due to all radiative modes.

IV. TIME-RESOLVED PL MEASUREMENTS

Emission lifetimes for the Er-doped structures were obtained
using the 488-nm line of an Ar gas laser passed through an
acousto-optic modulator. Er-related emission near 1550 nm
was collected through a monochromator and into a liquid
N2 cooled infrared photomultiplier. For the data presented
here, the PL intensity from each sample scaled linearly with
pump power, indicating the absence of saturation effects. A
representative PL spectrum is shown in the inset of Fig. 3.
Upon blocking the pump laser in each modulation period, the
time-resolved PL intensity at 1537 nm was recorded with a
multichannel scaler.

A. Characterization of Er-Doped Glass Films

For reference, we measured the radiative emission rate of
the Er-doped films corresponding to a homogeneous medium
with n = 1.45. Note that this rate, Γ1.45

rad , is the radiative
rate when LDOS = 1. For a 45-nm Er-doped glass film on
SiO2, the PL lifetime, τ , was 11.44 ± 0.01 ms. By placing oil
with an index of 1.518 on the surface of the sample, which
is assumed to not change the non-radiative decay rate, the
calculated LDOS is increased from 0.764 to 1.047. Indeed,
τ is decreased to 9.45 ± 0.01 ms with the fluid cover. The
original lifetime was recovered once the oil was removed with
isopropanol.

By solving Eq. 1 for the geometries with and without the
fluid, where Γtot = τ , we obtain Γ1.45

rad = 65 s−1, similar
to previously reported values for Er in soda-lime glass [8],
and Γnr = 38 s−1. This corresponds to a radiative quantum
efficiency in bulk glass of

η =
Γ1.45

rad

Γ1.45
rad + Γnr

= 0.63. (3)



Fig. 3. Time-resolved PL for Er-doped glass films on SiO2 and in slot
waveguide structures. The data for the structure with the 200-nm c-Si layer is
omitted since it overlaps the data corresponding to the 150-nm c-Si layer. The
488-nm pump was blocked at the time marked 0, allowing the spontaneous
emission lifetime, τ , to be measured. For the film on SiO2, a fluid cover with
n = 1.518 was placed on the surface, resulting in an increase of the decay
rate. The inset shows the Er PL spectrum, which peaks at 1537 nm.

B. Emission from Planar Si Slot Waveguides

The PL lifetime was measured for the three slot waveguide
geometries described above, and the corresponding decay
rates are plotted in Fig. 4. The PL intensity was low for
these samples due to interference and absorption of the pump
in the top Si layer, but also due to increased coupling of
spontaneous emission into guided waveguide modes [4]. This
effect becomes more pronounced as the c-Si layer becomes
thicker and the relative LDOS contribution from guided modes
becomes larger.

The non-radiative decay rate, Γnr, was adjusted to provide
the best fit to the data, and was thus determined to be 288
s−1. This significant increase compared with Er-doped glass on
SiO2 is due to interaction with defects at the Si/SiO2 interfaces
as well as in the bulk Si layers.

Overall, the differences in Γtot for the Er-doped layers in
the different waveguide geometries are well accounted for by
the LDOS alone, suggesting that it is reasonable to assume a
constant value of Γnr. Furthermore, since Γnr is the sole fitting
parameter and affects only the offset of the calculated curve
in Fig. 4, these measurements serve as a tenable verification
of the LDOS theory.

The observed changes in Γrad result in modification of the
internal quantum efficiency, as shown on the right axis of
Fig. 4. In particular, η increases from 0.37 for a slot waveguide
with a 100-nm c-Si layer to 0.51 for a 200-nm c-Si layer.
This change is purely a function of geometry, since the local
environment of the Er3+ ions remains unchanged. Finally, we
point out that, despite the significant increase in Γnr due to
the Si layers of the slot waveguide, much of the quantum
efficiency can be recovered as a result of the LDOS effect.

V. CONCLUSION

We have demonstrated modification of the radiative sponta-
neous emission rate, and consequently the radiative quantum

Fig. 4. Spontaneous emission rate for slot waveguides with varying thickness
of the lower c-Si layer. The solid curve corresponds to the total averaged
LDOS shown in Fig. 2 with the offset, Γnr, that results in the best fit to the
data for fabricated structures. The corresponding radiative quantum efficiency
is shown on the right axis.

efficiency, of Er-doped soda-lime glass layers in planar Si
slot waveguides by adjusting the waveguide geometry. The
films were shown to have a bulk glass radiative emission rate
of 65 s−1 and a quantum efficiency of 0.63 when deposited
on SiO2. Once incorporated into Si slot structures, the non-
radiative decay rate is increased more than 7-fold; however,
the radiative rate for 1537-nm radiation was greatly enhanced
due to the contribution of guided modes to the local density of
optical states. Furthermore, this radiative effect was shown to
vary significantly due to changes in the waveguide geometry
in agreement with theoretical calculations of the local density
of optical states.

Overall, this work demonstrates that one can take advantage
of the large slot confinement in high index contrast slot
waveguides to significantly modify the radiative properties of
emitters in the slot. In particular, by carefully optimizing the
waveguide geometry, the radiative quantum efficiency of Er-
doped glass can be maximized, which may prove useful in
realizing active Si-based waveguides operating near 1550 nm.
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