A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics

Cora M. Went1,2, Joeson Wong3, Phillip R. Jahelka3, Michael Kelzenberg3, Souvik Biswas3, Matthew S. Hunt4, Abigail Carbone5, Harry A. Atwater2,3,6*.

Two-dimensional transition metal dichalcogenides are promising candidates for ultrathin optoelectronic devices due to their high absorption coefficients and intrinsically passivated surfaces. To maintain these near-perfect surfaces, recent research has focused on fabricating contacts that limit Fermi-level pinning at the metal-semiconductor interface. Here, we develop a new, simple procedure for transferring metal contacts that does not require aligned lithography. Using this technique, we fabricate vertical Schottky-junction WS2 solar cells, with Ag and Au as asymmetric work function contacts. Under laser illumination, we observe rectifying behavior and open-circuit voltage above 500 mV in devices with transferred contacts, in contrast to resistive behavior and open-circuit voltage below 15 mV in devices with evaporated contacts. One-sun measurements and device simulation results indicate that this metal transfer process could enable high specific power vertical Schottky-junction transition metal dichalcogenide photovoltaics, and we anticipate that this technique will lead to advances for two-dimensional devices more broadly.

INTRODUCTION

Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), including MoS2, WS2, MoSe2, and WSe2, are promising for many optoelectronic applications, including high specific power photovoltaics (1–5). With absorption coefficients one to two orders of magnitude higher than conventional semiconductors, monolayer (<1 nm thick) TMDs can absorb as much visible light as about 15 nm of GaAs or 50 nm of Si (6). Both multilayer and monolayer TMDs can achieve near-unity broadband absorption in the visible range (7, 8). Because of their layered structure and out-of-plane van der Waals bonding, TMDs have intrinsically passivated surfaces with no dangling bonds and can form heterostructures without the constraint of lattice matching.

To take advantage of the intrinsically passivated surfaces of TMDs, gentle fabrication techniques are needed to form metal contacts without damaging the underlying semiconductor. A number of new contact techniques have been presented recently, including 1D edge contacts (9), via contacts embedded in hBN (10), slowly deposited In/Au contacts (11), and 2D metals (12). Recently, Liu et al. (13) have shown that transferring rather than evaporating metal contacts onto TMDs can yield interfaces with no Fermi-level pinning, where the Schottky barrier height can be predicted by the ideal Schottky-Mott rule. Their work demonstrates the use of transferring an arbitrary 3D metal onto a 2D material, forming a nondamaging van der Waals contact. However, this technique requires a final aligned lithography step to expose the contact under the polymer used for transfer, which limits its scalability (13).

To date, the above techniques for gentle contact fabrication have been applied to device geometries where carriers are collected laterally rather than vertically. Laterally contacted TMD devices use contact spacing on the order of 5 μm, which would be prohibitively expensive to fabricate for large-area, low-cost photovoltaic devices. Although laterally contacted devices are important for electronic applications, such as field effect transistors, vertically contacted devices are preferable for optoelectronic applications that require scalable photovoltaic active areas, such as solar cells. Van der Waals contacts could have an even greater advantage for these vertical device geometries, where the ratio of contact area to device area is often higher than in lateral device geometries.

Schottky-junction solar cells represent one specific device geometry where van der Waals metal contacts could enable high performance in vertical devices. Although vertical-junction solar cells are more aligned with conventional photovoltaics (14), most Schottky-junction TMD solar cells studied have been lateral-junction devices (13, 15, 16). Vertical Schottky-junction TMD solar cells have been limited by ohmic current-voltage (I-V) behavior, low external quantum efficiencies, and low open-circuit voltages, likely due to Fermi-level pinning induced by contact evaporation (7, 17). New gentle contact fabrication techniques have the potential to eliminate this Fermi-level pinning, enabling high-efficiency vertical TMD solar cells in the Schottky-junction geometry.

Here, we develop a simple technique for transferring metal contacts, where all lithographic patterning is done on a donor substrate rather than on the active device. We apply this technique to vertical Schottky-junction solar cells with multilayer TMD absorber layers. Because of the trade-off between bandgap energy and photoluminescence quantum yield, the theoretical maximum power conversion efficiency achievable for multilayer and monolayer single-junction solar cells is similar (4, 18), and further, tunneling limits transport in monolayer vertical devices (19), so we focus on multilayer...
devices in this work. Ultrathin (10- to 20-nm) WS₂ forms the absorber layer, while Ag and Au form the asymmetric work function contacts. Devices made with transferred metal contacts show diode-like I-V behavior with a near-unity ideality factor and high V_{OC}, while similar devices made with evaporated metal contacts show ohmic I-V behavior and near-zero V_{OC}. We demonstrate peak external quantum efficiency (EQE) of >40% and peak active-layer internal quantum efficiency (IQE_{active}) of >90% in transferred-contact devices. Using a solar simulator, we measure a photovoltaic power conversion efficiency of 0.46%, comparable to what has been seen in ultrathin vertical TMD photovoltaics with a p-n junction rather than a Schottky junction (20, 21). Device simulations of further-optimized geometries suggest that this new metal transfer process has the potential to enable Schottky-junction TMD solar cells with power conversion efficiencies greater than 8% and specific powers greater than 50 kW/kg.

RESULTS AND DISCUSSION

Fabrication of vertical WS₂ Schottky-junction solar cells

We prepare vertical WS₂ Schottky-junction solar cells made from 16-nm-thick WS₂ absorber layers, with Ag (ϕ_{Ag} ≈ 4.3 eV) and Au (ϕ_{Au} ≈ 5.1 eV) as asymmetric work function contacts (Fig. 1A) (13). Template-stripped Ag, which exhibits a root-mean-square roughness <0.5 nm, forms both the electron-collecting bottom contact and back reflector for all devices (22). We mechanically exfoliate WS₂ directly onto the Ag substrate. The subwavelength-thick WS₂ achieves broadband, angle-insensitive absorption on top of the highly reflective Ag, giving the WS₂ a deep purple color (7, 23). For transferred-contact devices, we transfer thin Au disks from a thermally oxidized Si donor substrate to form the semitransparent hole-collecting top contact, using the process described in the following section. Both the top surface of the template-stripped Ag and the bottom surface of the transferred Au inherit the smoothness of the SiO₂/Si donor substrate, leading to near atomically sharp metal-WS₂ interfaces (13, 22). Using cross-sectional analysis by transmission electron microscopy (TEM), we examine the interface between the transferred Au and the WS₂ (Fig. 1B). We find that in contrast to depositing Au via electron-beam evaporation (13), transferring Au does not damage the intrinsically passivated WS₂ layers, as evidenced by the columns of atoms visible in the TEM image. Figure 1C shows an optical image of a completed device. For comparison, we also fabricate devices by direct evaporation of thin Au disks onto the WS₂ using standard photolithography techniques.

The ideal band diagram of this Schottky-junction solar cell is shown in Fig. 1D. We assume a doping concentration of 10^{14} cm^{-3} for WS₂, as provided by the bulk crystal vendor. Since the length of the depletion region at a Schottky junction between bulk WS₂ and either Au or Ag is on the order of 1 μm, the device is fully depleted. We measure the final thicknesses of the WS₂ and the Au to be 16 and 19 nm, respectively, using atomic force microscopy.

Metal transfer process

We develop a new, simple process for transferring metal contacts onto TMDs (Fig. 2). This process relies on a self-assembled monolayer (SAM)
to reduce the adhesion between the Au and the SiO$_2$/Si donor substrate (24), a thermoplastic polymer to preferentially pick up or drop down the metal (25), and a variable peeling rate to tune the velocity-dependent adhesion between a metal and a viscoelastic stamp (24).

Briefly, we create a SAM on clean thermally oxidized Si chips in a vacuum desiccator (24). We then deposit 20 nm of Au via electron-beam evaporation. Using photolithography, we define the contact areas with positive photoresist and a positive photomask. We etch the Au outside the masked contact areas and then dissolve the remaining photoresist in acetone, leaving Au disks on the SAM-coated SiO$_2$/Si substrates. We prepare a polydimethylsiloxane (PDMS) stamp coated with the thermoplastic polymer polypropylene carbonate (PPC) on a glass slide (25). In a 2D transfer setup, we align and slowly lower the stamp onto a contact at 60°C. We set the temperature to 40°C, and once the stage reaches that temperature, we raise the transfer arm rapidly to peel the stamp and pick up the contact. We align the contact with the target TMD and slowly lower the stamp down at 60°C, and then slowly peel it away immediately after contact at the same temperature. The contact delaminates from the PDMS/PPC stamp and sticks to the TMD. Further details of the procedure are provided in section S1.

This metal transfer technique has worked in 15 of 16 devices fabricated thus far (>90% yield). It works for both 20- and 100-nm-thick Au and can likely be extended to other metals and to larger-scale contacts [i.e., for contacts to chemical vapor deposition (CVD)–grown TMDs]. A substantial advantage of this technique is that, whereas prior metal transfer techniques require a final aligned electron-beam lithography step to expose the contact area (13), this technique only uses unaligned photolithography to define the initial contacts on the SiO$_2$/Si donor substrate. This allows for batch fabrication of an array of contacts that can then be picked up, aligned, and printed to form multiple devices. Further, this metal transfer process could enable van der Waals contacts to air- and moisture-sensitive nanomaterials, such as lead halide perovskites or black phosphorus, to be formed without removing the sample from an inert environment.

Comparison of transferred and evaporated metal contacts

We measure I-V curves under illumination with a 633-nm laser focused to a ~1-μm2 spot in a confocal microscope at room temperature. In devices with transferred metal contacts, we observe rectifying I-V curves and a pronounced photovoltaic effect (Fig. 3A). We measure a V_{OC} of 510 mV under the maximum laser excitation. Short-circuit current follows a power law as a function of incident power, $I_{SC} = P_{inc}^{\alpha}$, with α close to 1 (Fig. 3C). According to the diode equation, V_{OC} scales linearly with $\ln(I_{SC})$ and can be fit with an ideality factor $n = 1.2$ (Fig. 3D). This near-unity ideality factor confirms the high interface and material quality in these devices. The ideality factor, diode-like behavior, and high open-circuit voltage suggest that a Schottky junction is successfully formed in devices with transferred contacts.

In contrast, we observe resistive behavior and a small photovoltaic effect in devices with evaporated top metal contacts (Fig. 3B). I_{SC} versus P_{inc} follows a power law with $\alpha < 1$ (Fig. 3E). As shown in Fig. 3F, this device behaves as a resistor with $R = 3.1$ kilohms. At comparable laser powers, V_{OC} is around 4 mV in evaporated-contact devices and 400 mV in transferred-contact devices, and I_{SC} is three to four times higher for transferred contacts than for evaporated contacts. Previous work demonstrates that because of Fermi-level pinning, evaporated Au and transferred Ag have effectively the same barrier height for electrons and holes (13). Assuming an effective work function difference between Au and Ag of 50 meV, device simulations can predict the purely resistive behavior in an evaporated-contact Schottky-junction device (fig. S1). This evidence points to strong Fermi-level pinning in devices with evaporated contacts due to interface states induced by the Au evaporation.

In devices with transferred contacts, the slope of the I-V curve at short circuit increases linearly with increasing laser power, corresponding to a decreasing shunt resistance (fig. S2A). This photo-shunting effect occurs in solar cells without perfectly selective contacts due to increased minority carrier conductivity across the device under illumination (26, 27). Device simulations can replicate this photoshunt pathway without the addition of any external shunt resistance (fig. S2B). In future devices, the introduction of contacts with greater carrier selectivity or the combination of a p-n junction with a Schottky junction could reduce or eliminate the photo-shunting observed here.

Quantum efficiency and photocurrent generation

Light beam induced current (or photocurrent) maps, acquired with a 633-nm laser in a confocal microscope, show uniform current generation under the entire Au disk contact, except where shaded by the contact probe (Fig. 4A). The uniformity of the photocurrent demonstrates that the Au is homogeneously semitransparent and in
good contact with the TMD. This indicates that the area of the Au disk can be used to accurately define the device active area (fig. S3) and suggests that 1D device simulations are sufficient to describe the behavior in these vertical devices (28). Further, it demonstrates that there are no visible bubbles created during the metal transfer process.

The measured total absorption (Fig. 4C) matches well with the absorption calculated using the transfer matrix method (Fig. 4B), as has been previously demonstrated in TMD solar cells (7, 17). To calculate the active-layer absorption in the experimental WS2 devices, we subtract the simulated parasitic absorption (the sum of the Au and Ag curves in Fig. 4B) from the experimentally measured total absorption in Fig. 4C. The mean active-layer absorption from 450 to 650 nm (Fig. 4F) is due to parasitic absorption and reflection losses from the 19-nm-thick Au top contact. Using a more transparent top contact could double our photogenerated carriers per unit area (Fig. 4E). This high IQEactive suggests efficient collection of photogenerated carriers in transferred-contact devices.

Performance under one-sun illumination
Vertical Schottky-junction WS2 solar cells with transferred top contacts achieve reasonable photovoltaic performance when measured under simulated AM1.5G illumination. Figure 5 shows the AM1.5G I-V behavior of a representative device. We divide the measured current by the device active area to yield current density, and then further divide by a factor of 0.67 to account for spectral mismatch between our solar simulator calibration point and the true AM1.5G spectrum (see Materials and Methods; fig. S4) (29). The spectral mismatch correction leads to a 50% increase in short-circuit current, so the Voc and power conversion efficiency of the device are likely underestimated here. We measure a Voc of 256 mV, a corrected Jsc of 4.10 mA/cm2, a fill factor of 0.44, and a power conversion efficiency of 0.46%. This efficiency is in the range of what others have reported for ultrathin TMD photovoltaics (16, 17, 20, 21). Using the densities of Au, WS2, and Ag, we estimate a specific power of 3 kW/kg for this device.

By fitting the one-sun I-V curve using the diode equation with series and shunt resistances, we estimate a shunt resistance (Rsh) of 231 ohm cm2 and a negligible series resistance (Rs), as shown in fig. S5. The shunt resistance is likely due to the photoshunting behavior discussed above and could be reduced by design and realization of contacts that are more carrier selective.
This photovoltaic performance is consistent among multiple measurements and devices. The J_{SC} of 4.10 mA/cm2 that we measure with the solar simulator is within 10% of the J_{SC} that we calculate by integrating the EQE over the solar spectrum (4.55 mA/cm2). We believe that probe shading, which we correct for in EQE measurements but not in solar simulator measurements, accounts for the 10% discrepancy. Although the J_{SC} varies because of differences in thickness and, therefore, absorption in exfoliated flakes, the V_{OC} is replicable across all devices fabricated for this work. As shown in figs. S6 and S7, V_{OC} is between 220 and 260 mV in all four devices measured under one-sun illumination, and V_{OC} is greater than 220 mV in six different devices measured under illumination with a halogen lamp (~20 suns power density). The I-V curves show no hysteresis when swept in the forward and backward directions (fig. S8).

Simulated performance of optimized devices

To examine and further optimize the performance of these devices, we simulate a variety of device geometries. The assumed material parameters of the WS$_2$ are detailed in table S1. Simulating the same
device geometry as our experimental device yields the $I-V$ curve in Fig. 6A. The simulated J_{SC} of 5.7 mA/cm2 is consistent with our measured active-layer IQE of 74% and the J_{SC} of 4.55 mA/cm2 estimated from the EQE. The simulated V_{OC} of 646 mV and R_{SH} of 2240 ohms cm2 are considerably higher than the V_{OC} of 256 mV and R_{SH} of 231 ohms cm2 observed in our one-sun measurements. This demonstrates that with further optimization, our device geometry could achieve higher voltages and less shunting than we currently see (fig. S9). As a first improvement, we suggest replacing Au with a different high work function metal, as Au is known to form thiol bonds with sulfides that could affect the quality of the van der Waals contact (13, 30).

To identify a potential path toward high-efficiency vertical Schottky-junction WS$_2$ solar cells, we simulate a series of optimized devices (Fig. 6B). The use of an optimized thickness of WS$_2$ (26 nm) for maximum absorption under 20 nm of Au increases the J_{SC} to 7.1 mA/cm2. The J_{SC} can be further increased to 12.5 mA/cm2 by replacing Au with a transparent top contact, assuming an identical work function to Au and no parasitic absorption or reflection. By selecting metal work functions that are optimally aligned to the conduction and valence bands of WS$_2$ ($\phi_1 = 4.05$ and $\phi_2 = 5.2$ eV; e.g., In and Pd), we predict a V_{OC} increase of 230 mV. Combining transparent top contacts and optimized metal work functions yields the device shown in Fig. 6C, with a V_{OC} of 898 mV, a J_{SC} of 12.7 mA/cm2, a fill factor of 0.78, and a power conversion efficiency of 8.9%. This simulated power conversion efficiency in a device with a thickness $<$150 nm represents a specific power of 58 kW/kg, demonstrating that this metal transfer process has the potential to enable devices with an unprecedented power-per-unit-weight ratio for transportation and aerospace applications.

CONCLUSIONS

We develop here a process for transferring metal contacts with near-atomically smooth interfaces that has high yield, allows for batch fabrication, and eliminates aligned lithography. We expect that this procedure will be highly relevant and useful to the 2D community and to researchers working on air-sensitive nanomaterials, as it allows all processing to be done on the contacts rather than the device. By applying this new technique to vertical Schottky-junction TMD solar cells, we demonstrate that transferred contacts are particularly advantageous for vertical device geometries, which are important for photovoltaic and other optoelectronic applications due to their scalable active areas. Recent advances in techniques such as growth of wafer-scale 2D TMDs via CVD (31–33) and pickup and stacking of large-area van der Waals materials (34) will enable the scaling of TMD solar cells from the micrometer to the wafer scale.

The rectifying $I-V$ curves shown in transferred-contact devices and resistive $I-V$ curves shown in evaporated-contact devices support the hypothesis that transferring contacts can reduce Fermi-level pinning and allow the work function asymmetry between the contacts to define the maximum achievable V_{OC}. We observe active-layer absorption $>$55%, EQE $>$40%, and active-layer IQE $>$90% in these devices, demonstrating efficient collection of photogenerated carriers. Under one-sun illumination, we measure a V_{OC} of 256 mV, a J_{SC} of 4.10 mA/cm2, a fill factor of 0.44, and a power conversion efficiency of 0.46%. We highlight areas for improvement by simulating the behavior of optimized devices based on this architecture and show 8.9% simulated efficiency and 58-kW/kg simulated specific power in a device with transparent top contacts, optimized thickness, and ideal metal work functions for carrier extraction.
Given the proof-of-concept performance and the clear pathways for improvement presented here for devices less than 150 nm thick, ultrathin vertical Schottky-junction TMD solar cells with transferred contacts are promising candidates for high specific power photovoltaic applications. We anticipate that this new metal transfer process will enable similar advances for 2D TMD devices beyond Schottky-junction solar cells and for nanomaterial-based devices more broadly.

MATERIALS AND METHODS

Device fabrication

Template-stripped silver substrates were prepared, as described previously (17, 22). WS2 was mechanically exfoliated directly onto template-stripped silver from the bulk crystal (HQ Graphene) using Scotch tape. For transferred-contact devices, Au top contacts were prepared and transferred using the metal transfer technique summarized in the main text and described in detail in section S1. The SAM used was trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma Aldrich), the photoresist used was S1813, and the Au etchant used was Transene Gold Etchant TFA. For evaporated-contact devices, Au top contacts were patterned using standard photolithography techniques as described previously (17). Contacts were fabricated on WS2 within 12 hours of exfoliation. Final WS2 and Au thicknesses were confirmed using atomic force microscopy (Asylum Research).

Cross-sectional analysis by TEM

Site-specific, cross-sectional lamella samples were prepared near the middle of metal contacts using a Nova 600 NanoLab (Thermo Fisher) scanning electron microscope with a gallium focused ion beam and an AutoProbe 200 sample lift-out system (Oxford Instruments). TEM imaging was carried out in a Tecnai TF-30 (Thermo Fisher Scientific) operated at 300 kV in high-resolution TEM mode.

Photocurrent and power-dependent I-V

Photocurrent and power-dependent I-V were measured on a scanning confocal microscope (Zeiss Axio Imager 2) using a long working distance objective (50×; numerical aperture (NA), 0.55). Devices were contacted using piezoelectrically controlled micromanipulators (MiBots, Imina Technologies). I-V curves were measured with a Keithley 2425 SourceMeter using custom LabView programs. The current density was divided by the photodetector’s responsivity.

Absorption and EQE

Absorption and EQE measurements were both corrected by a shading factor of 1.39 that corrects for the shading of the MiBot tips, which was calculated by comparing absorption with and without the tips in place and averaging over the spectral range 450 to 650 nm.

Solar simulator

One-sun I-V curves were measured using a 1-kW Xenon arc lamp (Newport Oriel) with an AM1.5G filter (ABET Technologies). To ensure 100 mW/cm² incident power, the lamp power was adjusted to generate the correct current on an Si reference cell placed at the same location as the sample. MiBots were used to contact the device, and I-V curves were measured with a Keithley 2425 SourceMeter using custom LabView programs. The current density was divided by a spectral mismatch factor to account for the difference in bandgap between our WS2 sample and our Si reference cell and the difference in spectrum between our solar simulator and AM1.5G (29). As no EQE data were available for our device below 400 nm, linear extrapolation was used, leading to about a 5% error in the spectral mismatch factor and the reported JSC values. The device area was assumed to be that of the Au disk, which has a diameter of 28 μm.

Device simulations

Absorption and generation were calculated using the transfer matrix method, with optical constants for WS2 taken from literature (35). We then used the calculated generation rate as an input into a finite-element device physics simulation software package that solves the semiconductor drift–diffusion equations. All other device simulations were performed using Numerical CHARGE, a software package that uses the finite-element drift–diffusion method to calculate charge transport in semiconductor devices. The WS2 doping was specified by the bulk crystal vendor (HQ Graphene). Other WS2 parameters, including bandgap (36), work function (37), DC permittivity (38), effective mass (39), out-of-plane mobility (40–42), and photoluminescence quantum yield (43–45) were taken from the literature and are listed in table S1. The radiative recombination coefficient was calculated using the Roosbroeck–Shockley relation (46), and the Shockley–Read–Hall lifetime for minority carriers was then estimated using the photoluminescence quantum yield.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/12/eaax6061/DC1

Section S1. Detailed metal transfer procedure

Fig. S1. Simulated I-V curve for evaporated devices.

Fig. S2. Photoshunting.

Fig. S3. Active area.

Fig. S4. Spectral mismatch.

Fig. S5. Fitting for one-sun I-V curve.

Fig. S6. Reproducibility.

Fig. S7. Microscope images of other fabricated devices.

Fig. S8. Forward/backward scans.

Fig. S9. Matching simulations to experimental device.

Table S1. WS2 parameters for device simulations.

REFERENCES AND NOTES

Citation: C.M. Went, J. Wong, P.R. Jahelka, M. Klenenberg, S. Biswas, M.S. Hunt, A. Atwater, A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Sci. Adv. 5, eaax6061 (2019).
A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics
Cora M. Went, Joeson Wong, Phillip R. Jahelka, Michael Kelzenberg, Souvik Biswas, Matthew S. Hunt, Abigail Carbone and Harry A. Atwater

Sci Adv 5 (12), eaax6061.
DOI: 10.1126/sciadv.aax6061